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Abstract
We suggest a measure of classical correlation in a two-qubit state, which is
computable and implementable in experiments. As examples, we investigate
the classical and quantum correlations in the Werner states and in a group of
particular states mixed with three parts: an entangled, a separable and a product
one. It is shown that the quantum correlation in a two-qubit state cannot exceed
the classical correlation in the same state.

PACS numbers: 03.67.−a, 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Early discussion on the correlation between two particles in a quantum domain can be traced
back to the EPR paradox [1], Bell’s theorem [2, 3] and the corresponding experimental tests
[4–6]. How to quantify the classical and quantum correlation in a bipartite state is always an
interesting question. During the last decade, many good suggestions have been proposed to
measure the degree of entanglement [7–12]. At the same time, the quantification of classical
correlation in composite states also attracted much attention [10, 13–16]. For example,
Henderson and Vedral defined the classical correlation in a quantum state as the maximum
difference in Von Neumann entropy (uncertainty) about one subsystem before and after some
positive-operator-valued measures (POVMs) on the other subsystem [14]; Groisman et al
gave an operational definition for the quantum and classical correlation in a bipartite quantum
state via the amount of work (noise) required to destroy the corresponding correlations [16].
However, the permutation symmetry of the measure proposed in [14] is not confirmed; how to
find out a POVM, which optimizes this classical correlation in a general case, is not obvious
[17]. Quantifying the ‘work’ or ‘noise’ in [16] is not an easy task, too. At present, although
there is no consensus on the quantification of classical correlation in a quantum state, some
necessary properties are still expected for an acceptable one. In the following, we use the
notation R(ρAB) to represent the classical correlation in an A–B two-qubit state ρAB , which
should satisfy
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(1) R(ρAB) = 0 iff ρAB is a product state,
(2) R(ρAB) is symmetric under the permutation of A and B,
(3) R(ρAB) is invariant under local unitary operations,
(4) R(ρAB) equals the quantum correlation (entanglement) E(ρAB) if the two-qubit state ρAB

is a pure state.

2. Definition of classical correlation

Our definition of classical correlation is based on the results of local projective measurements.
Given two local projections M̂A and M̂B on a two-qubit state ρAB , we first introduce an
un-normalized correlation function through the covariance of the two local projections, which
is

f (ρAB) ≡ 〈(M̂A − 〈M̂A〉)(M̂B − 〈M̂B〉)〉AB

= 〈M̂A ⊗ M̂B〉AB − 〈M̂A〉A〈M̂B〉B.
(1)

Here 〈M̂A ⊗ M̂B〉AB stands for the expectation value of the coincidence measurement
M̂AB = M̂A ⊗ M̂B on the A–B composite system, while 〈M̂A(B)〉A(B) represents the
expectation value of the local measurement M̂A(B) on the subsystem A (B). By applying the
Cauchy–Schwarz inequality, it is easy to get the upper bound of this un-normalized correlation
function, i.e. f (ρAB) � 1

4 . Thus, the function (1) can be normalized (with maximum value 1)
as

F(ρAB) = 4f (ρAB) = 4(〈M̂A ⊗ M̂B〉AB − 〈M̂A〉A〈M̂B〉B), (2)

whose absolute value indicates the correlation strength between qubits A and B. The lower
bound ‘−1’ and the upper bound ‘1’ correspond to perfect anti-correlation and perfect
correlation, respectively.

Based on the correlation function (2), a pair of local measurements, M̂A and M̂B , give a
measure of the correlation function in the state ρAB . However, this measure may not be the
optimal one if the two local projections, M̂A and M̂B , are chosen randomly. In experiments, if
we scan all pairs of local projections, a maximum correlation result can be obtained. Here we
define the classical correlation in a two-qubit state ρAB as the maximum value of the normalized
correlation function (2), as the two local measurements, M̂A and M̂B , run throughout all local
projections, that is

R(ρAB) = max
M̂A∈MA;M̂B∈MB

4(〈M̂A ⊗ M̂B〉AB − 〈M̂A〉A〈M̂B〉B), (3)

where MA (and MB) is the set of all projective measurements in the subsystem A (and B).
Since all projective measurements in each subsystem are unitarily equivalent to each other,
the projection M̂j (j = A,B) in a qubit system can be described by a specific projection P̂ j

and a unitary matrix Û j through the relation M̂j = Û
†
j P̂j Ûj , with

P̂j =
(

1 0
0 0

)
j

, (4a)

Ûj =
(

cos θj eiφj sin θj

− sin θj eiφj cos θj

)
j

(4b)

and

M̂j =
(

cos2 θj sin θj cos θj e−iφj

sin θj cos θj eiφj sin2 θj

)
j

. (4c)
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Noting that the unitary matrix (4b) is equivalent to the combined action of a phase shifter and
a beam merger, i.e. Ûj = Ŝ

(2)
j Ŝ

(1)
j , with Ŝ

(1)
j = exp

(
iφj

2 σz

)
and Ŝ

(2)
j = exp(iθjσy) [18–20],

the classical correlation defined in equation (3) is experimentally achievable in a two-particle
four-path interferometer [21–23].

3. Measure of classical correlation

By applying the two local projections, M̂A and M̂B , with the form of equation (4c), on the
A–B two-qubit state ρAB , we can derive the three expectation values involved in equation (3),
which are

〈M̂A〉A = (ρ11 + ρ22) cos2 θA + (ρ33 + ρ44) sin2 θA + Re[(ρ13 + ρ24) sin 2θA eiφA ], (5a)

〈M̂B〉B = (ρ11 + ρ33) cos2 θB + (ρ22 + ρ44) sin2 θB + Re[(ρ12 + ρ34) sin 2θB eiφB ], (5b)

〈M̂A ⊗ M̂B〉AB = ρ11 cos2 θA cos2 θB + ρ22 cos2 θA sin2 θB + ρ33 sin2 θA cos2 θB

+ ρ44 sin2 θA sin2 θB + Re[ρ13 sin 2θA cos2 θB eiφA + ρ12 cos2 θA sin 2θB eiφB

+ 1
2ρ14 sin 2θA sin 2θB ei(φA+φB) + 1

2ρ23 sin 2θA sin 2θB ei(φA−φB)

+ ρ24 sin 2θA sin2 θB eiφA + ρ34 sin2 θA sin 2θB eiφB ]. (5c)

Here ρmn(m, n = 1, 2, 3, 4) are the elements of the density matrix ρAB . By substituting
equations (5) into equation (3), we can rewrite the classical correlation in the two-qubit state
ρAB as

R(ρAB) = max
θA,θB ,φA,φB

4(a1 cos 2θA cos 2θB + a2 sin 2θA cos 2θB

+ a3 cos 2θA sin 2θB + a4 sin 2θA sin 2θB), (6a)

with

a1 = ρ11ρ44 − ρ22ρ33,

a2 = Re{[(ρ22 + ρ44)ρ31 − (ρ11 + ρ33)ρ42] eiφA},
a3 = Re{[(ρ33 + ρ44)ρ21 − (ρ11 + ρ22)ρ43] eiφB },
a4 = 1

2 Re{[ρ32 − (ρ31 + ρ42)(ρ12 + ρ34)] ei(φA−φB) + [ρ41 − (ρ31 + ρ42)(ρ21 + ρ43)]e
i(φA+φB)}.

(6b)

Since the four coefficients, a1, a2, a3 and a4, are independent of the two variables θA and θB ,
we can first maximize the function (6) against θA and θB , which leads to

R(ρAB) = max
φA,φB

2[
√

(a1 + a4)2 + (a2 − a3)2 +
√

(a1 − a4)2 + (a2 + a3)2]. (7)

Although the analytic solution for the maximization of the function (7) with respect to two
angle variables, φA and φB , is not evident, its numerical result can be easily computed.
Thus, based on the results of local projective measurements, we have derived a dimensionless
quantity to measure the classical correlation in a two-qubit state, which is computable and
experimentally implementable. Furthermore, it is easy to verify that the four properties listed
in section 1 are fully satisfied by this measure of classical correlation.

According to the above result (7), if a two-qubit state ρ̃AB possesses the following
‘symmetries’,

(ρ̃11 + ρ̃22)ρ̃34 = (ρ̃33 + ρ̃44)ρ̃12, (ρ̃11 + ρ̃33)ρ̃24 = (ρ̃22 + ρ̃44)ρ̃13, (8)

the corresponding classical correlation has a simpler form,

R(ρ̃AB) = max{T1, T2}, (9a)

3
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with

T1 = 4|ρ̃11ρ̃44 − ρ̃22ρ̃33|, (9b)

T2 = 2|ρ̃41 − (ρ̃31 + ρ̃42)(ρ̃21 + ρ̃43)| + 2|ρ̃32 − (ρ̃31 + ρ̃42)(ρ̃12 + ρ̃34)|. (9c)

All two-qubit Werner states [25] and the Schmidt decomposition of any two-qubit pure state
satisfy the properties (8), so the classical correlation in them can be calculated directly through
equations (9).

4. Discussions and results

To quantify the correlation strength between two and more particles, different strategies may
lead to different results and even different units. For example, distillable entanglement,
entanglement cost, relative entropy of entanglement and entanglement of formation have
the same unit as entropy. Although all of them reduce to the Von Neumann entropy for
pure states, they usually present different results when the entanglement of a mixed state is
requested. Concurrence and negativity, which could be considered as dimensionless measures
for the entanglement of a two-qubit state, usually do not match each other unless some special
states are considered. As two of the most discussed entanglement measures for two-qubit
systems, entanglement of formation EF is connected to concurrence C through the following
relation [7, 11]:

EF(ρAB) = h

(
1 +

√
1 − C2

2

)
, (10)

with h(x) being the binary entropy function:

h(x) = −x log2 x − (1 − x) log2(1 − x). (11)

Accordingly, we assume that the entropic measure of the classical correlation in a two-qubit
state, denoted as RE(ρAB), has the same one-to-one correspondence with the dimensionless
measure of classical correlation R(ρAB), that is

RE(ρAB) = h

(
1 +

√
1 − R2

2

)
. (12)

This definition assures the prediction that a bipartite pure state has an equal amount of the
classical and quantum correlation, or say, an equal amount of noise (work) is required to
erase the classical and quantum correlation in a bipartite pure state [16]. In addition, the
entanglement of formation of a two-qubit state can also be considered as the minimum
number of singlets required to construct per copy of the original two-qubit state, by means
of local operations and classical communications (LOCC). An open question arises: whether
this entropic measure for the classical correlation in a two-qubit state, defined in equation (12),
has a similar meaning with respect to local unitary operations?

Without proof, most people hold the conjecture that the quantum correlation cannot
exceed the classical one [16]. To test this conjecture numerically, we randomly choose one
million two-qubit states in a FORTRAN program, and no violation is found based on the
entanglement of formation (10) for quantum correlation and the measure (12) for the classical
correlation. Since the entanglement of formation is an upper bound for all entropic measures of
two-qubit entanglement [24], the above results also hold when other entanglement measures,
such as distillable entanglement and relative entropy of entanglement, are chosen to represent
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Figure 1. Quantum and classical correlation in Werner states as a function of variable w.

the quantum correlation. Another important advantage of entanglement of formation is its
computability.

In the following, we present the results of quantum and classical correlation in some
special states. As is well known, the Werner state [25] of this form

ρw = 1 − w

3
I4 +

4w − 1

3
|�−〉〈�−|, (13)

is entangled for 1
2 < w � 1, with concurrence C(ρw) = 2w − 1 (|�−〉 = 1√

2
(|01〉− |10〉) is a

Bell state). According to definition (3), the classical correlation in the above Werner states is

R(ρw) =
∣∣∣∣4w − 1

3

∣∣∣∣ , (14)

and the corresponding entropic measure can be derived through equation (12):

RE(ρw) = h

(
1 +

√
1 − R2

2

)
= h

(
1

2
+

1

3

√
(1 + 2w)(2 − 2w)

)
. (15)

In figure 1, we plot the classical correlation RE(ρw), together with the quantum correlation
(entanglement of formation) EF(ρw), as a function of the variable w. It is shown that the
classical correlation is always greater than or equal to the quantum correlation, which is in
accord with the conjecture mentioned above. The only zero value on the curve RE(ρw) for
the classical correlation appears at the point with w = 0.25, which corresponds to the product
state I4/4. For w = 1, corresponding to the pure state |�−〉, the classical correlation equals
the quantum correlation.

Just as mentioned before, some difficulties, such as the determination of POVM optimizing
the classical correlation proposed in [14] and the quantification of the ‘work’ or ‘noise’
suggested in [16], make the classical correlation proposed in [10, 13–16] hard to compute.
In two recent works [26, 27], the classical correlation, denoted by R′

E here, is also defined as
the difference between the quantum mutual information and the entropic quantum correlation,
which is numerically computable for the two-qubit states. Since the four properties introduced
above are also satisfied by the measure in [26, 27], we would like to compare it with the quantum
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correlation. Based on this measure, the entropic classical correlation in the Werner states (13)
would be

R′
E(ρw) =

⎧⎪⎪⎨
⎪⎪⎩

2 + w log2 w + (1 − w) log2

(
1−w

3

)
when 0 � w � 1

2

2 + w log2 w + (1 − w) log2

(
1−w

3

)
+

[
1
2 +

√
w(1 − w)

]
× log2[ 1

2 +
√

w(1 − w)] +
[

1
2 − √

w(1 − w)
]

log2

× [
1
2 − √

w(1 − w)
]

when 1
2 < w � 1,

(16)

which is plotted in figure 1 (R′
E(ρw)). Different from our measure (3), the classical correlation

calculated with equation (16) may be smaller than the quantum correlation (see w > 0.82
in figure 1) and larger than the quantum correlation (see w < 0.82). According to Bell’s
theorem [2, 3] and its experimental tests [4–6], the violation of Bell’s inequality is an evidence
that quantum correlation is stronger than the classical correlation. To this point of view, the
quantity to measure the classical correlation in a quantum state needs to be always larger
(including equal) than the quantum correlation or be always smaller (including equal) than the
quantum correlation. Therefore, the measure of the classical correlation defined in [26, 27]
might not be a good one.

To gain more insight on the classical and the quantum correlation in the quantum states,
we present another example by constructing the following state:

ρ ′ = p|φ+〉〈φ+| + q(1 − p)ρ(s) + (1 − q)(1 − p)I4/4, (17)

where |φ+〉 = 1√
2
(|00〉 + |11〉) is one of the four Bell states with maximal quantum correlation

and classical correlation,

ρ(s) =

⎛
⎜⎜⎝

0.3000
00.300
000.10
0000.3

⎞
⎟⎟⎠

is a separable state with classical correlation R(ρ(s)) = 0.24 and I4/4 is a product state with
vanishing quantum correlation and vanishing classical correlation. As a function of the two
variables p and q, the classical correlation in the states (17) based on our measure (3) is
expressed as

R(ρ ′) = 1
5 (5p + q − pq) + 1

25q2(1 − p)2. (18)

Note that the classical correlation is unit for the Bell state |φ+〉, 0.24 for the separable state ρ(s)

and zero for the product state I4/4. Note that the above result (18) is different from the average
classical correlation of the three components in (17). To calculate the concurrence of the
state (17), we need to know the four eigenvalues of the matrix ρ ′ρ̃ ′ = ρ ′(σy ⊗σy)ρ

′∗(σy ⊗σy)

[7, 11], which are

λ1 =
[
p +

1 − p

20
(5 + q)

]2

,

λ2 =
(

1 − p

20

)2

(5 + q)2,

λ3 = λ4 =
(

1 − p

20

)2

(5 + q)(5 − 3q).

(19)

Then the concurrence of the state (17) is finally expressed as

C(ρ ′) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}
= max

{
0, p − 1 − p

10

√
(5 + q)(5 − 3q)

}
. (20)
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(a) (b)

(c) (d )

Figure 2. Classical (a and b) and quantum (c) correlation in the states (17) as a function of variables
p and q. The classical correlation in graph (a) is based on our present measure and the classical
correlation in graph (b) is based on the measure of [27, 26]. The graph (d) is the projection of the
three graphs onto the x–z (p-correlation) plane.

From formulae (18) and (20), the inequality R(ρ ′) � p � C(ρ ′) holds for any p and q in
the range [0, 1], which means that the quantum correlation does not exceed the classical one
based on our measure. The state (17) is separable if the weight of the component |φ+〉 is
small

(
p <

√
3

5+
√

3

)
, which implies that the concurrence is not additive for mixed states and the

mixture of an entangled state with one or more separable states may result in an unentangled
state. The dependence of the (entropic) classical and quantum correlation in the state (17) on
the parameters p and q is plotted in figures 2(a) and (c), respectively. Figure 2(b) represents
the classical correlation by the method of [26, 27], which may be larger or smaller than the
quantum correlation (see figure 2(d)).

The current measure of classical correlation in a two-qubit state can be extended to high
dimensional bipartite systems. By scanning all pairs of local projections in high dimensions,
we can, in principle, experimentally measure the classical correlation in a high dimensional
bipartite state. Unfortunately, due to the complexity of high dimensional space, we have
not achieved a computable function for the quantification of the classical correlation in high
dimensional states at present. On the other hand, whether this measure can be generalized
to the multipartite case is still not clear. Recently, Kaszlikowski et al claimed that genuine
quantum correlations can exist in some multipartite states which have no genuine multipartite
classical correlations [28], which is different from the result of bipartite case discussed in this
paper. What is the physics behind this difference is a very interesting question.

5. Conclusions

In this paper, the classical correlation in a two-qubit state is investigated, and a computable
measure on the classical correlation is proposed, which can be implemented in experiments.
Our numerical results show that the quantum correlation cannot exceed the classical
correlation. As examples, the classical correlation in the Werner states and in a group of
particular states mixed with three parts, an entangled, a separable and a product state, is
presented. We hope all these discussions are helpful in understanding the classical correlation
in a quantum state and its relationship with entanglement.
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